Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation.

نویسندگان

  • Monica D David
  • Andrée Yeramian
  • Mireia Duñach
  • Marta Llovera
  • Carles Cantí
  • Antonio García de Herreros
  • Joan X Comella
  • Judit Herreros
چکیده

Tyrosine phosphorylation of beta-catenin, a component of adhesion complexes and of the Wnt pathway, affects cell adhesion, migration and gene transcription. By reducing beta-catenin availability using shRNA-mediated gene silencing or expression of intracellular N-cadherin, we show that beta-catenin is required for axon growth downstream of brain-derived neurotrophic factor (BDNF) signalling and hepatocyte growth factor (HGF) signalling. We demonstrate that the receptor tyrosine kinases (RTKs) Trk and Met interact with and phosphorylate beta-catenin. Stimulation of Trk receptors by neurotrophins (NTs) results in phosphorylation of beta-catenin at residue Y654, and increased axon growth and branching. Conversely, pharmacological inhibition of Trk or expression of a Y654F mutant blocks these effects. beta-catenin phosphorylated at Y654 colocalizes with the cytoskeleton at growth cones. However, HGF, which also increases axon growth and branching, induces beta-catenin phosphorylation at Y142 and a nuclear localization. Interestingly, dominant-negative DeltaN-TCF4 abolishes the effects of HGF in axon growth and branching, but not that of NTs. We conclude that NT- and HGF-signalling differentially phosphorylate beta-catenin, targeting this protein to distinct compartments to regulate axon morphogenesis by TCF4-transcription-dependent and -independent mechanisms. These results place beta-catenin downstream of growth-factor-RTK signalling in axon differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling

Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching b...

متن کامل

Intracellular control of developmental and regenerative axon growth.

Axon growth is a highly regulated process that requires stimulating signals from extracellular factors. The extracellular signals are then transduced to regulate coordinately gene expression and local axon assembly. Growth factors, especially neurotrophins that act via receptor tyrosine kinases, have been heavily studied as extracellular factors that stimulate axon growth. Downstream of recepto...

متن کامل

p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation.

Heterozygous germline mutations in p63, a transcription factor of the p53 family, result in abnormal morphogenesis of the skin and its associated structures, including hair follicles and teeth. In mice lacking p63, all ectodermal organs fail to develop, and stratification of the epidermis is absent. We show that the ectodermal placodes that mark early tooth and hair follicle morphogenesis do no...

متن کامل

Conductin/axin2 and Wnt signalling regulates centrosome cohesion.

Activated Wnt/beta-catenin signalling is a characteristic of many cancers and drives cell-cycle progression. Here, we report a mechanism linking Wnt/beta-catenin signalling to centrosome separation. We show that conductin/axin2, a negative regulator of beta-catenin, localizes at the centrosomes by binding to the centriole-associated component C-Nap1. Knockout or knockdown of conductin leads to ...

متن کامل

Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus.

Estrogens regulate a wide set of neuronal functions such as gene expression, survival and differentiation in a manner not very different from that exerted by neurotrophins or by growth factors. The best-studied hormonal action is the transcriptional activation mediated by estrogen receptors. However, the direct effects of estrogen on growth factor signaling have not been well clarified. The pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2008